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Overview

Membrane Introduction Mass Spectrometery (MIMS) is a
technique which can be used for rapid characterization of
organic compounds in water.  Because spectra of all
compounds are acquired nearly simultaneously, significant
problems can occur in the analysis of complex mixtures.
Chemometric data analysis has been applied to MIMS data
acquired from mixtures of aromatic compounds with similar
and overlapping spectra (benzene, toluene, ethyl benzene and
xylenes).  Multivariate calibration techniques (partial least-
squares, PLS) proved successful in predicting concentrations
in  mixtures where univariate methods failed.



The simultaneous diffusion of compounds through the
 membrane in membrane introduction mass spectrometry (MIMS)
is one of the method's principal strengths, in that all analytical
information is acquired in a relatively short time.  However,
simultaneous introduction of a complex mixture into a mass
spectrometer poses problems where there are not enough "pure"
ions available for quantification and identification.
This poster presents the use of multivariate calibration for
mixture analysis using MIMS.  Multivariate calibration using
partial least-squares (PLS) regression was used for the
quantification and identification of three mixtures of increasing
complexity.

Introduction



Membrane System :  Direct Insertion Probe
MIMS Technology Inc.
temperature:  50C 
flow:  1-2ml/min

Membrane: Silicone Rubber Sheet
Silastic, 0.01" thickness

Ion Trap MS: Varian Saturn 3 GC/MS
Finnigan MAT GCQ

Chemometrics: MATLAB version 4.2c
PLS_Toolbox 1.5.2

Experimental
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PLS regression consists of two steps:

(1) The data reduction step extracts features from the mass
spectral data that correlate with analyte concentration, resulting in
a PLS scores matrix (n x h, where n is the number of spectra and
h is the number of latent variables or PLS factors.)

(2) The multivariate calibration step that builds a model of the
form

ci = b0 + b1xi,1 + ..... + bnxi,h

where ci is the predicted concentration for mass spectrum i, the xi

terms are the PLS factor scores, and the b terms are the regression
coefficients.

Multivariate Calibration



Three mixtures of increasing complexity were analyzed:

1) A simple three-component mixture with minimal spectral
overlap composed  of benzene, toluene, and p-xylene (BTX),

2)  A two-component isomer mixture of ethyl benzene and p-
xylene (EX), and

3)  A complex four-component mixture of benzene, toluene, p-
xylene, and ethyl benzene (BTEX).

Results and Discussion



# BTX was analyzed for comparison between the multivariate
and univariate calibration methods.  A typical MIMS total ion
current profile and mass spectrum is shown in Figures 1a & 1b.

# Correlation between the predicted concentrations from the PLS
models and the actual concentrations are shown in Figure 2.
Performance of the multivariate calibration methods is nearly
identical to univariate models over the concentration range
analyzed with prediction errors < 15% for univariate and < 13%
for the multivariate calibration method.  The multivariate
calibration did not outperform the univariate method due to the
limited  calibration set used (10) and that little spectral
interferences exists between the analytes.

BTX Mixture
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#The mass spectra of pure ethyl benzene and pure p-xylene (Figures
3A & 3B) are nearly identical and only differ by the ion abundances
(Figure 3C).

# Using  merely seven mixture samples, it was possible to build a
multivariate calibration model with relative errors <12%  (Figure 4). A
univariate model was attempted  using m/z 65 for ethyl benzene and
m/z 105 for p-xylene (best responses found for linear regression) but
little correlation between signal and concentration was found.

#  A prinicipal component analysis (PCA) scores plot is shown in
Figure 5.  For the multivariate methods, such as PCA and PLS, distinct
linear trends are observed for ethyl benzene and p-xylene. For the
univariate method, no distinction was observed between the analytes.

EX Mixture
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# For the BTEX mixture, a larger sample set (24 mixtures) was
designed to give the maximum amount of spectral information for
the least amount of samples.  While the test samples were chosen
to represent known environmental samples of interest and
extreme situations.

# The predicted v. actual concentrations are shown in Figure 6.
The relative calibration errors are all <15%, while the prediction
errors are <20% except for p-xylene. The large error for p-xylene
can be attributed to a test sample  containing a small quantity of
ethyl benzene in the presence of a large quantity of p-xylene.

BTEX Mixture
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# Using multivariate calibration, complex mixtures could be
qualitatively and quantitately analyzed for analytes having
overlapping spectra.

# A mixture of isomers could be analyzed with prediction errors
under 20% except for the extreme case where the isomers'
concentration difference was large.

# All PLS models gave reliable determinations of BTEX
mixtures.

Conclusions



# The models were built using the mass spectra or average mass
spectra corresponding to the maximum peak height of the flow
injection profile.  An additional dimension could be added to the
model if the entire flow injection profile was included (i.e.,
spectra and time) using multi-way or  second order calibration
algorithms.

# Larger errors were observed for benzene than expected using
the multivariate method and is probably due to the inclusion of
minor noise ions in the model.  Elimination of unimportant or
noise ions could be accomplished by the judicious choice of ions
to include in the model.

Future Work
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